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We consider the scattering by a semi-infinite array of bodies of arbitrary geometry
excited by an incident wave in the linear water-wave formulation (which reduces to
the simpler case of Helmholtz scattering if the depth dependence can be removed).
The theory presented here is extremely general, and we present example calculations
for an array of floating elastic plates (a highly non-trivial scatterer). The solution
method follows closely from the solution for point scatterers in a medium governed
by Helmholtz’s equation. We have made several extensions to this theory, considering
water-wave scattering, allowing for bodies of arbitrary scattering geometry and
showing how to include the effects of bound waves (called Rayleigh–Bloch waves
in the water-wave context) in the formulation. We present results for scattering by
arrays of cylinders that show the convergence of our methods and also some results
for the case of scattering by floating elastic plates and fixed docks.

1. Introduction
Many physical structures (antennas, offshore platforms etc.) consist of repeating

elements which are evenly spaced. In many cases, it is possible to simplify the problem
considerably by assuming that the elements are arranged in an infinite array (i.e. the
array extends to infinity in one dimension in both directions) and then to solve for
the resultant scattering by assuming a periodic relationship between each element of
the array. If the forcing is also periodic, this method then reduces the problem to
solving for a single element of the array, but it requires the influence of all other
elements in the infinite array to be included. The idea of studying infinite arrays is
not new and is related to the theory of diffraction gratings. It is not our intention to
give a complete summary of the literature, and we refer the reader to the excellent
review article McIver (2002), which describes both finite- and infinite-array effects.

The most significant early results for scattering by infinite arrays were those
of von Ignatowsky (1914), who considered the problem of scattering by cylinders
of arbitrary cross-section in a medium governed by Helmholtz’s equation, and of
Twersky (1962), who solved for circular cylinders using a separation-of-variables
approach. This problem was revisited by Linton & Evans (1993), who also obtained
numerical results, and it was further extended by Porter & Evans (1999) to the case
of non-circular geometries using a Green’s function method. Recently, Peter, Meylan
& Linton (2006) have solved for an array of bodies of arbitrary geometry in the
context of water waves (which reduces to the simpler Helmholtz equation if the depth
dependence can be removed). This solution was based on the extension of the
interaction theory of Kagemoto & Yue (1986) developed by Peter & Meylan (2004).
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The infinite-array solution has been used successfully to predict the motion and
forces on large arrays far from the edges. It is natural to consider the more complicated
case of a semi-infinite array (one which extends to infinity in only one direction) and
to solve this problem so as to be able to model effects near the edges of large finite
arrays. This problem is much more challenging than the infinite-array problem both
theoretically and numerically, because it is not possible to reduce the solution to
an unknown defined on a single scatterer. The problem was considered by Hills &
Karp (1965) and was recently studied by Linton & Martin (2004), who determined
the scattering due to a semi-infinite array composed of infinitely small isotropic
scatterers in a two-dimensional medium governed by Helmholtz’s equation. Owing
to the small-size assumption, they were able to solve the problem using the Wiener–
Hopf technique, a method which does not appear to be suitable for extension to
more complicated geometries. However, the basic method in Linton & Martin (2004)
(which was to subtract the infinite-array solution) is suitable for extension to arbitrary
geometry bodies, as are the expressions for the far field.

There is another important complication in the semi-infinite array problem which
is not present in the infinite-array problem. It is well known that some infinite arrays
can support bound waves which travel along the array and which do not radiate
energy to infinity away from the array. These waves are called Rayleigh–Bloch waves
in the water-wave context, and they have other names (guided waves, surface waves)
in acoustics and electromagnetics. Generally, they propagate along the array with a
dominant wavenumber which is greater than that for freely propagating waves and
they decay exponentially away from the array. It is possible to obtain Rayleigh–Bloch
waves which have a dominant wavelength less than the freely propagating waves, as
was shown by Porter & Evans (2005), but this occurs only for very special geometries
and we will not consider this case here.

Rayleigh–Bloch waves have been constructed for a range of geometries (see the
references in Porter & Evans 1999) and a proof was given for their existence in
quite general situations by Linton & McIver (2002). However, all these results have
been for a medium governed by Helmholtz’s equation, which requires a geometry
uniform in depth in the water-wave context. No Rayleigh–Bloch waves have been
found (numerically or analytically) in the more general water-wave case in which the
bodies have some complicated depth dependence, and it remains an open question
whether these waves can exist in this situation. It turns out that for the case of a
semi-infinite array subject to an incident wave, Rayleigh–Bloch waves can be excited
and, hence, need to be taken into consideration in the derivation of a solution method
(this idea was suggested by Richard Porter in a personal communication). Including
the Rayleigh–Bloch waves in the formulation for the semi-infinite case requires a
further extension of the theory of Linton & Martin (2004).

The solution for a semi-infinite array given here is an extension of the solution for
an infinite array given in Peter et al. (2006). An outline of the paper is as follows.
Section 2 contains the explicit formulation of the problem and the derivation of a
generic system of equations which applies to both the infinite array and the semi-
infinite array. In § 3, the infinite-array problem is briefly revisited, since it is required
for the solution for the semi-infinite array. The phenomenon of Rayleigh–Bloch waves
is discussed in § 4, before two different solution methods for the semi-infinite array
are presented in § 5. It should be noted that these two methods differ only in the
special (and more complicated) case in which a Rayleigh–Bloch wave is excited. For
the case when there is no Rayleigh–Bloch wave excited, the two methods coincide.
The far-field representation is derived in §6 and the numerically efficient calculation
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Figure 1. Plan view of the relation between the bodies.

of some series arising in the problem is discussed in §7. Section 8 is concerned with
numerical results for floating plates and, in particular, it contains a convergence study
for rigid bottom-mounted circular cylinders.

2. Formulation of the general problem
The formulation and notation follows closely from Peter et al. (2006) where the

solution for an infinite array was presented, and we will omit some details in the
derivation which can be found in Peter et al. (2006). We consider the water-wave
scattering of a plane wave by a semi-infinite array of identical vertically non-
overlapping bodies, denoted by ∆j . The mean-centre positions Oj of the ∆j are
assumed to be Oj = (jR, 0), j = 0, . . . , ∞, where the distance between the bodies, R,
is assumed to be sufficiently large that there is no intersection of the smallest circular
cylinder which contains each body (the escribed cylinder) with any other body. The
ambient plane wave is assumed to travel in the direction χ ∈ (0, π) where χ is
measured with respect to the x-axis. Let rj , θj , z be the local cylindrical coordinates
of the j th body ∆j , where the z-axis points vertically upwards. Note that the zeroth
body is centred at the origin and its local cylindrical coordinates coincide with the
global ones, r, θ, z. Figure 1 illustrates the setting.

The equations of motion for the water are derived from the linearized inviscid
theory. Assuming that the motion is time-harmonic with radian frequency ω, the
velocity potential can be expressed as the real part of a complex quantity:

Φ(x, t) = Re {φ(x)e−iωt}. (2.1)

Writing α = ω2/g where g is the acceleration due to gravity, the complex water-
velocity potential φ has to satisfy the standard boundary-value problem

∇2φ = 0, x ∈ D, (2.2a)

∂φ

∂z
= αφ, x ∈ Γ f , (2.2b)

∂φ

∂z
= 0, x ∈ D, z = −d, (2.2c)

where D = (�2 × (−d, 0))\
⋃

j ∆̄j is the domain occupied by the water and Γ f is
the free water surface. At the immersed body surface Γj of ∆j , the water-velocity
potential has to equal the normal velocity of the body, vj :

∂φ

∂n
= vj , x ∈ Γj . (2.2d )

Moreover, a radiation condition is imposed, ensuring that there are only outgoing
waves from each scatterer (more precisely, we only allow for scattered waves which
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can be represented in the expansion (2.5) below). The ambient incident potential is
denoted by φIn and the positive wavenumber k is related to α by the dispersion relation

α = k tanh kd. (2.3)

The values of km, m > 0, are given as positive real roots of the dispersion relation

α + km tan kmd = 0. (2.4)

For ease of notation, we write k0 = −ik. Note that k0 is a (purely imaginary) root of
(2.4).

2.1. Eigenfunction expansion of the potential

The scattered potential of the body ∆j can be expanded in singular cylindrical
eigenfunctions:

φS
j (rj , θj , z) =

∞∑
m=0

fm(z)

∞∑
µ=−∞

Aj
mµKµ(kmrj )e

iµθj , (2.5)

with discrete coefficients Aj
mµ, where the fm are the orthonormal vertical eigenfunctions

defined by

fm(z) =
cos km(z + d)

cos kmd
. (2.6)

In (2.5), the term for m = 0 corresponds to the propagating modes while the terms
for m � 1 correspond to the decaying modes. The potential incident upon body ∆j

can also be expanded in regular cylindrical eigenfunctions:

φI
j (rj , θj , z) =

∞∑
n=0

fn(z)

∞∑
ν=−∞

Dj
nνIν(knrj )e

iνθj , (2.7)

with discrete coefficients Dj
nν . In these expansions, Iν and Kν denote modified Bessel

functions of the first and second kind, respectively, both of order ν (Abramowitz &
Stegun 1970). For future reference, we remark that, for real x,

Kν(−ix) =
πiν+1

2
H (1)

ν (x) and Iν(−ix) = i−νJν(x), (2.8)

where H (1)
ν and Jν denote the Hankel function and the Bessel function, respectively,

both of first kind and of order ν (Abramowitz & Stegun 1970).

2.2. Representation of the ambient wave field in the eigenfunction representation

In Cartesian coordinates centred at the origin, the ambient plane-wave field is given
by

φIn(x, y, z) =
Ag

ω
f0(z)e

ik(x cos χ+y sin χ),

where A is the amplitude (of the displacement) and χ is the angle between the
x-axis and the direction in which the wave field travels (see also figure 1). In the
eigenfunction expansion centred at the origin, this can be expressed as

φIn(r, θ, z) =
Ag

ω
f0(z)

∞∑
ν=−∞

eiν(π/2−θ+χ)Jν(kr).

In order to represent the ambient wave field, which is incident upon all the bodies,
in the eigenfunction expansion of an incoming wave in the local coordinates of a
particular body, a phase factor has to be defined,

Pl = eiklR cosχ , (2.9)
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which accounts for the position from the origin. Including this phase factor and
making use of (2.8), the ambient wave field at the lth body is given by

φIn(rl, θl, z) =
Ag

ω
Plf0(z)

∞∑
ν=−∞

eiν(π−χ)Iν(k0rl)e
iνθl .

We can therefore define the coefficients of the ambient wave field in the eigenfunction
expansion of an incident wave,

D̃l
nν =

⎧⎨
⎩

Ag

ω
Ple

iν(π−χ), n = 0,

0, n > 0.

Note that the decaying coefficients are all zero, owing to the propagating nature of
the ambient wave.

2.3. Derivation of the general system of equations

Making use of a general interaction theory (Kagemoto & Yue 1986; Peter & Meylan
2004), a system of equations is developed for the unknown coefficients (in the
expansion (2.5)) of the scattered wavefields of all the bodies. The methodology,
sometimes also referred to as a T -matrix method, is based on transforming the
scattered potential of ∆j into a potential incident upon ∆l (j �= l). Doing this for all
bodies simultaneously, and relating the incident and scattered potentials for each body,
a system of equations for the unknown coefficients is developed. This system of equa-
tions can then be simplified for the two cases of an infinite and a semi-infinite array.

The scattered potential φS
j of body ∆j needs to be represented in terms of the poten-

tial φI
l incident upon ∆l , j �= l. From figure 1 we can see that this can be accomplished

by using Graf’s addition theorem for Bessel functions, given in Abramowitz & Stegun
(1970, equation (9.1.79)),

Kτ (kmrj )e
iτ (θj −ϕj−l ) =

∞∑
ν=−∞

Kτ+ν(km|j − l|R) Iν(kmrl)e
iν(π−θl+ϕj−l ), j �= l, (2.10)

which is valid provided that rl <R. The angles ϕn account for the difference in
direction, depending on whether the j th body is located to the left or to the right of
the lth body, and they are defined by

ϕn =

{
π, n > 0,

0, n < 0.

The limitation rl <R requires only that the escribed cylinder of each body ∆l does
not enclose any other origin Oj (j �= l). However, the expansion of the scattered
and incident potential in cylindrical eigenfunctions is only valid outside the escribed
cylinder of each body. Therefore the condition that the escribed cylinder of each body
∆l does not enclose any other origin Oj (j �= l) is superseded by the more stringent
restriction that the escribed cylinder of each body may not contain any part of any
other body.

Making use of the eigenfunction expansion as well as (2.10), the scattered potential
∆j (cf. (2.5)) can be expressed in terms of the potential incident upon ∆l as

φS
j (rl, θl, z) =

∞∑
m=0

fm(z)

∞∑
ν=−∞

[ ∞∑
τ=−∞

Aj
mτ (−1)νKτ−ν(km|j − l|R)ei(τ−ν)ϕj−l

]
Iν(kmrl)e

iνθl .
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The ambient incident wave field φIn can also be expanded in the eigenfunctions
corresponding to the wave field incident upon ∆l . Let D̃l

nν denote the coefficients of
this ambient incident wave field in the incoming eigenfunction expansion for ∆l (see
§ 2.2). The total wave field incident upon body ∆j can now be expressed as

φI
l (rl, θl, z) = φIn(rl, θl, z) +

∑
j∈Xl

φS
j (rl, θl, z)

=

∞∑
n=0

fn(z)

∞∑
ν=−∞

[
D̃l

nν +
∑
j∈Xl

∞∑
τ=−∞

Aj
nτ (−1)νKτ−ν(kn|j − l|R)ei(τ−ν)ϕj−l

]

× Iν(knrl)e
iνθl ,

where X = � (the set of all integers) in the infinite-array case and X = � (the set
of natural numbers which, in particular, includes zero) for the semi-infinite array and
Xl = X\{l}. The coefficients of the total potential incident upon ∆l are therefore
given by

Dl
nν = D̃l

nν +
∑
j∈Xl

∞∑
τ=−∞

Aj
nτ (−1)νKτ−ν(kn|j − l|R)ei(τ−ν)ϕj−l , (2.11)

for n ∈ �, ν ∈ �, l ∈ X.
In general, it is possible to relate the total incident and scattered partial waves for

any body through the diffraction characteristics of that body in isolation. There exist
diffraction transfer operators Bl , sometimes also referred to as T -matrices, that relate
the coefficients of the incident and scattered partial waves, such that

Al
mµ =

∞∑
n=0

∞∑
ν=−∞

Bl
mnµνD

l
nν, (2.12)

where the Al are the scattered modes corresponding to the incident modes Dl . Note
that since it is assumed that all bodies are identical in this setting, only one diffraction
transfer operator, B , is required. Assuming that the diffraction transfer operator is
known, the substitution of (2.11) into (2.12) gives the required equations determining
the coefficients of the scattered wavefields of all bodies,

Al
mµ =

∞∑
n=0

∞∑
ν=−∞

Bl
mnµν

[
D̃l

nν +
∑
j∈Xl

∞∑
τ=−∞

Aj
nτ (−1)νKτ−ν(kn|j − l|R)ei(τ−ν)ϕj−l

]
, (2.13)

for m ∈ �, µ ∈ �, l ∈ X.

3. The infinite array
For an infinite array, we have X = �. Owing to the periodicity of the geometry and

of the incident wave, the coefficients Al
mµ can be written as Al

mµ =PlA
0
mµ =PlAmµ, say.

The same can be done for the coefficients of the incident ambient wave, i.e. D̃l
nν = PlD̃nν

(see also § 2.2). Noting that P −1
l = P−l and PjPl = Pj+l , (2.13) simplifies to

Amµ =

∞∑
n=0

∞∑
ν=−∞

Bmnµν

⎡
⎢⎣D̃nν + (−1)ν

∞∑
τ=−∞

Anτ

∞∑
j=−∞
j �=0

PjKτ−ν(kn|j |R)ei(τ−ν)ϕj

⎤
⎥⎦ . (3.1)
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Introducing the constants

σn
ν =

∞∑
j=−∞
j �=0

PjKν(kn|j |R)eiνϕj =

∞∑
j=1

(P−j + (−1)νPj )Kν(knjR), (3.2)

which can be evaluated separately since they do not contain any unknowns, the
problem reduces to

Amµ =

∞∑
n=0

∞∑
ν=−∞

Bmnµν

[
D̃nν + (−1)ν

∞∑
τ=−∞

Anτ σ n
τ−ν

]
. (3.3)

The efficient computation of the constants σn
ν is discussed in § 7.

For numerical calculations, the infinite sums in (3.3) have to be truncated. Assuming
a suitable truncation, the diffraction transfer operator can be represented by a matrix
B, the finite-depth diffraction transfer matrix. Truncating the coefficients accordingly,
defining ainf to be the vector of the coefficients of the scattered potential and dIn

to be the vector of coefficients of the ambient wave field, and making use of a
coordinate-transformation matrix Sinf given by

(Sinf)pq = (−1)qσ n
p−q,

a linear system of equations for the unknown coefficients follows from (3.3):

(I − B tSinf)ainf = B dIn, (3.4)

where the left superscript t indicates transposition of the matrix Sinf and I is the
identity matrix of the same dimension as B.

4. Rayleigh–Bloch waves
Before turning to the derivation of a system of equations for the semi-infinite array,

we need to discuss a special type of surface wave, the so-called Rayleigh–Bloch waves.
Rayleigh–Bloch waves travel along an infinite periodic array and decay exponentially
away from the array. Only in very exceptional cases (which will not be considered
here) are they excited by plane incident waves (Porter & Evans 2005). Rayleigh–Bloch
waves (if they can be supported by the structure) are excited in a semi-infinite array
provided that k < π/R.

Rayleigh–Bloch waves are observed for a very general class of arrays, where the
medium is governed by the two-dimensional Helmholtz equation (Linton & McIver
2002). In the water-wave context this means that the structures must have a depth
dependence which can be ignored, so that the problem reduces to two dimensions. In
the more general water-wave context, no Rayleigh–Bloch waves have been found. It
seems likely that such waves will exist only for very special geometries and frequencies,
but this remains a conjecture at the present time. There are many offshore structures
which do support Rayleigh–Bloch waves, e.g. arrays of bottom-mounted cylinders.
We also assume that only a single Rayleigh–Bloch wave exists for a given frequency.
Some more information on Rayleigh–Bloch waves can be found in Porter & Evans
(1999) and Linton & McIver (2002).

For the problem under consideration, it is important to see whether the structure
supports a Rayleigh–Bloch wave because, in this case, we would need to give this
special attention in the subsequent derivations. The Rayleigh–Bloch wavenumber β
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is the value for which the operator −∇2, subject to the periodicity conditions

φ|x=0 = eiRβφ|x=R, ∂xφ|x=0 = eiRβ∂xφ|x=R (4.1)

and appropriate boundary conditions at the body surfaces, has an eigenvalue in the
interval (k, π/R]. This corresponds to a wave travelling down the array with phase
factor

Qj = eijRβ. (4.2)

Numerically, the Rayleigh–Bloch wavenumber is easy to determine: in terms of the
matrices of the truncated problem, it is the value of β for which

det(I − B tSinf(β)) = 0, (4.3)

where in (3.2) Pj has been replaced by Qj , and we have written Sinf(β) to emphasize

the dependence of Sinf on β (note that β = k cos χ in §3).
For future reference, we will continue to denote the Rayleigh–Bloch wavenumber

by β and the corresponding eigenvector by v (i.e. v is the eigenvector of the non-
truncated operator in (4.3) associated with the eigenvalue zero), which is normalized
by (

∑
m,µ v2

mµ)1/2.

5. Semi-infinite array
In this section, we present two different methods for determining the solution of the

semi-infinite-array problem. These two methods only differ if a Rayleigh–Bloch wave is
present; they coincide in the case of no Rayleigh–Bloch wave. Note that the coefficients
of the Rayleigh–Bloch wave in the eigenfunction expansion (2.5) are given by a
constant multiple, c, of the eigenvector v and that v can be determined a priori (see § 4).

The idea of the first method is to derive a system of equations for the difference
between the coefficients of the semi-infinite array and those of the infinite array
and the Rayleigh–Bloch wave. Assuming that this difference must approach zero as
the number j of body ∆j becomes large, the constant c can be determined (by a
least-squares fit) as that constant which realizes this condition. The second method
makes use of the idea that, far along the array, the difference between the coefficients
of the semi-infinite and the infinite array should consist only of the Rayleigh–Bloch
contribution. This can be used to formulate a system of equations in which the
Rayleigh–Bloch wave is completely captured, although a truncation is performed for
numerical calculations.

5.1. Non-Rayleigh–Bloch case or (if present) subtraction of the Rayleigh–Bloch wave

In order to avoid confusion, from now on, we denote the coefficients of the semi-
infinite array by Xj

mµ. Note that j ∈ X = �, in this case. As j becomes large, it can be
expected that the coefficients of the infinite array and the semi-infinite array become
more and more similar. However, this is not the case if a Rayleigh–Bloch wave is
excited. Therefore, we look for the difference of the coefficients of the semi-infinite
array from the infinite array and a Rayleigh–Bloch wave,

Zj
mµ = Xj

mµ − PjAmµ − Qj Amµ, (5.1)

where Qj is the phase factor of the Rayleigh–Bloch wave (see (4.2)) and the Amµ

are the coefficients of the Rayleigh–Bloch wave in the eigenfunction expansion (2.5).
When we are in a setting where no Rayleigh–Bloch waves are excited, we just have
Amµ = 0. For this, it is sufficient that k � π/R or that the structure does not
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support Rayleigh–Bloch waves. It has to be noted that the Amµ involve an a priori
unknown coefficient, the amplitude of the Rayleigh–Bloch wave. A method for the
determination of Amµ is discussed in §5.2.

Instead of solving for the Xj
mµ directly, we derive a systems of equations for the

differences Zj
mµ and solve for those. The system of equations for the coefficients Xj

mµ

is given by (2.13) with X = �. Using (5.1), a system of equations for the Zj
mµ is

obtained:

Zl
mµ + PlAmµ + QlAmµ =

∞∑
n=0

∞∑
ν=−∞

Bmnµν

×
[
D̃l

nν +
∑
j∈�l

∞∑
τ=−∞

(
Zj

nτ + PjAnτ + Qj Anτ

)
(−1)νKτ−ν(kn|j − l|R)ei(τ−ν)ϕj−l

]
.

Utilizing (3.1), noting that Amµ also satisfies (3.1) in which we have set D̃nν = 0 and
Pj−l has been replaced by Qj−l , changing the summation and noting that ϕn = 0 for
n< 0, we are left with

Zl
mµ =

∞∑
n=0

∞∑
ν=−∞

Bmnµν

[∑
j∈�l

∞∑
τ=−∞

Zj
nτ (−1)νKτ−ν(kn|j − l|R)ei(τ−ν)ϕj−l

− (−1)νQl

∞∑
τ=−∞

Anτ

∞∑
j=l+1

Q−jKτ−ν(knjR)

− (−1)νPl

∞∑
τ=−∞

Anτ

∞∑
j=l+1

P−jKτ−ν(knjR)

]
.

Introducing constants ς̃ nl
ν and ς̂ nl

ν defined by

ς̃ nl
ν =

∞∑
j=l+1

P−jKν(knjR), ς̂ nl
ν =

∞∑
j=−l
j �=0

Q−jKν(knjR), (5.2)

the system of equations simplifies to

Zl
mµ =

∞∑
n=0

∞∑
ν=−∞

Bmnµν

[∑
j∈�l

∞∑
τ=−∞

Zj
nτ (−1)νKτ−ν(kn|j − l|R)ei(τ−ν)ϕj−l

− (−1)νQl

∞∑
τ=−∞

Anτ ς̂
nl
τ−ν − (−1)νPl

∞∑
τ=−∞

Anτ ς̃
nl
τ−ν

]
. (5.3)

The efficient computation of the ς̃ nl
ν and the ς̂ nl

ν is outlined in § 7.
We truncate the coefficients in the same way as for the infinite array, i.e. we

define zl to be the vector of the differences between the coefficients of the scattered
potential of the semi-infinite array and those for the infinite array (denoted by ainf)
and the Rayleigh–Bloch wave (denoted by aRB). Now we make use of a coordinate-
transformation matrix Tj l given by

(Tj l)pq = (−1)qKp−q(km|j − l|R) ei(p−q)ϕj−l (5.4)
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as well as matrices S̃ and Ŝ appropriately mapping the coefficients of the infinite
array and of the Rayleigh–Bloch wave, given by

(S̃l)pq = (−1)qPlς̃
nl
p−q, (Ŝl)pq = (−1)qQlς̂

nl
p−q, (5.5)

to obtain a linear system of equations for the unknown coefficients from (5.3):

zl = B

⎛
⎜⎝ ∞∑

j=0
j �=l

tTj l zj + tŜl aRB − tS̃l ainf

⎞
⎟⎠ , l = 0, . . . , ∞. (5.6)

It is worth noting that this method also provides a means of determining whether
a Rayleigh–Bloch wave is present. If (5.6) is solved assuming aRB = 0 and the zl do
not decay to zero for large l, a Rayleigh–Bloch wave must be present. Nevertheless, it
appears that the method for determining the presence of a Rayleigh–Bloch wave based
on the infinite-array solution of Peter et al. (2006) described in § 4 is more direct.
Moreover, if a Rayleigh–Bloch wave is present, the method of § 4 automatically
supplies its wavenumber.

5.2. Determination of c

The structure of the amplitude of the Rayleigh–Bloch wave is given by A = cv with a
complex constant c. Since the eigenvector v can be determined from (4.3), the problem
reduces to finding the constant c. In what follows, we suggest a way for its numerical
approximation using a least-squares approach.

One approach for the approximation of aRB is to use a least-squares fit. Substituting
aRB = cv into (5.6), the system of equations for N bodies in the computation reads

⎡
⎢⎢⎢⎢⎣

I −B tT21 · · · −B tTN1

−B tT12 I · · · −B tTN2

...
...

. . .
...

−B tT1N −B tT2N · · · I

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

z1

z2

...

zN

⎤
⎥⎥⎥⎥⎦ = c

⎡
⎢⎢⎢⎢⎣

B tŜ1 v

B tŜ2 v
...

B tŜN v

⎤
⎥⎥⎥⎥⎦ −

⎡
⎢⎢⎢⎢⎣

B tS̃1 ainf

B tS̃2 ainf

...

B tS̃N ainf

⎤
⎥⎥⎥⎥⎦ , (5.7)

where I denotes the identity matrix which is of the same dimension as B. Equation (5.7)
can be written as Az = cb − c.

Using the fact that the zj should decay to zero for increasing j if the Rayleigh–
Bloch wave has been subtracted correctly, c is given as the least-squares solution of
the overdetermined system

cA−1b − A−1c = 0. (5.8)

Since only zN (or the zj of the last few bodies) should be close to zero, only the last
few rows of (5.8) should be used for the least-squares fit.

5.3. Projection method

If a sufficient number of bodies is used in the semi-infinite-array calculation, N say,
it is reasonable to assume that the coefficients of the last body, ZN , contain only the
Rayleigh–Bloch wave. For this purpose, consider the system of equations without the
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Rayleigh–Bloch wave. This corresponds to (5.3) with Amµ = 0,

Zl
mµ =

∞∑
n=0

∞∑
ν=−∞

Bmnµν

[∑
j∈�l

∞∑
τ=−∞

Zj
nτ (−1)νKτ−ν(kn|j − l|R)ei(τ−ν)ϕj−l

− (−1)νPl

∞∑
τ=−∞

Anτ ς̃
nl
τ−ν

]
.

Since we have to truncate the sum over j for numerical calculations anyway, we will
split it up as follows. For some sufficiently large number N , we can write

Zl
mµ =

∞∑
n=0

∞∑
ν=−∞

Bmnµν

⎡
⎢⎣ N∑

j=0
j �=l

∞∑
τ=−∞

Zj
nτ (−1)νKτ−ν(kn|j − l|R)ei(τ−ν)ϕj−l

+

∞∑
j=N+1

∞∑
τ=−∞

Zj
nτ (−1)νKτ−ν(kn|j − l|R)ei(τ−ν)ϕj−l − (−1)νPl

∞∑
τ=−∞

Anτ ς̃
nl
τ−ν

⎤
⎥⎦ .

We then assume that the coefficients of the last body, ZN , contain only the Rayleigh–
Bloch wave. Therefore, the coefficients Zj

nτ , j � N + 1, can be replaced by the
projections of ZN

mµ onto the eigenvector vnτ multiplied by the Rayleigh–Bloch phase
factor Qj−N :

Zj
nτ = Qj−N

∞∑
m=0

∞∑
µ=−∞

ZN
mµv̄mµvnτ , j � N + 1,

where the overbar denotes complex conjugation. Note that the double sum is just the
scalar product of ZN and v. Writing

AP
nτ =

∞∑
m=0

∞∑
µ=−∞

ZN
mµv̄mµvnτ

for ease of notation, the system then simplifies to

Zl
mµ =

∞∑
n=0

∞∑
ν=−∞

Bmnµν

⎡
⎢⎣ N∑

j=0
j �=l

∞∑
τ=−∞

Zj
nτ (−1)νKτ−ν(kn|j − l|R)ei(τ−ν)ϕj−l

+

∞∑
τ=−∞

(−1)νAP
nτQl−N

∞∑
j=N+1−l

QjKτ−ν(kn|j |R)ei(τ−ν)ϕj − (−1)νPl

∞∑
τ=−∞

Anτ ς̃
nl
τ−ν

⎤
⎥⎦,

Introducing

ςnl
ν =

∞∑
j=N−l+1

QjKν(knjR)eiνϕj , (5.9)
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we are left with

Zl
mµ =

∞∑
n=0

∞∑
ν=−∞

Bmnµν

⎡
⎢⎣ N∑

j=0
j �=l

∞∑
τ=−∞

Zj
nτ (−1)νKτ−ν(kn|j − l|R)ei(τ−ν)ϕj−l

+

∞∑
τ=−∞

(−1)νQl−Nςnl
τ−νAP

nτ − (−1)νPl

∞∑
τ=−∞

Anτ ς̃
nl
τ−ν

⎤
⎥⎦ . (5.10)

Note that, in this approach, the Zj
mµ do not approach zero for large j since they

contain the Rayleigh–Bloch wave.
For numerical calculations, the infinite sums in (5.10) have to be truncated. With

the same truncation as before (cf. §§3 and 5.1), and introducing a matrix S extending
the Rayleigh–Bloch wave to the rest of the array appropriately,

(Sl)pq = (−1)q Ql−Nςnl
p−q, (5.11)

as well as the matrix V= v tv̄ (i.e. a dyadic product), a linear system of equations for
the unknown coefficients follows from (5.10),

zl = B

⎛
⎜⎝ N∑

j=0
j �=l

tTj l zj + tSlVzN − tS̃l ainf

⎞
⎟⎠, l = 0, . . . , N. (5.12)

Note that if we formally set v =0 (so that no Rayleigh–Bloch wave is present), this
system of equations is the same as that for the (truncated) subtraction method (5.6)
without the Rayleigh–Bloch wave.

6. The far field
In this section, the far field, which describes the scattering far from the array,

is examined. First, we define the scattering angles which give the directions of
propagation of the plane scattered waves far from the array. Letting p = 2π/R, we
define these scattering angles χm by

χm = arccos(ψm/k) where ψm = k cos χ + mp (6.1)

and write ψ for ψ0. Also note that χ0 = χ by definition. If |ψm| <k, i.e. if

−1 < cos χ +
mp

k
< 1,

we say that m ∈ M and then 0 < χm < π. It turns out (see below) that these angles
(±χm for m ∈ M) give the directions in which plane waves propagate away from the
array. If |ψm| >k then χm is no longer real and the appropriate branch of the arccos
function is given by

arccos t =

{
i arccosh t, t > 1,

π − i arccosh(−t), t < −1,

with arccosh t = log(t +
√

t2 − 1) for t > 1.

6.1. Infinite array

The details of the derivation of the far field of the infinite array can be found in Peter
et al. (2006), which is an adaptation of the original derivation of Twersky (1962). For
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the total potential we have

φ = φIn +

∞∑
m=0

fm(z)

∞∑
j=−∞

Pj

∞∑
µ=−∞

AmµKµ(kmrj )e
iµθj

∼ φIn +
π

2
f0(z)

∞∑
j=−∞

Pj

∞∑
µ=−∞

A0µiµ+1H (1)
µ (krj )e

iµθj , (6.2)

as kr → ∞, away from the array axis y = 0. In (6.2) we have used the identity (2.8).
Making use of the integral representation

H (1)
µ (kr) eiµθ =

(−i)µ+1

π

∫ ∞

−∞

e−kγ (t)|y|

γ (t)
eikxt eiµ sgn(y) arccos t dt, (6.3)

in which x = r cos θ , y = r sin θ and γ (t) is defined for real t by

γ (t) =

{
−i

√
1 − t2, |t | � 1,

√
t2 − 1, |t | > 1

and the Poisson summation formula, it turns out that the far field consists of a set of
plane waves propagating in the directions θ = ±χm:

φ ∼ φIn +
πi

kR
f0(z)

∑
m∈M

1

sinχm

eikr cos(θ∓χm)

∞∑
µ=−∞

A0µ e±iµχm. (6.4)

It is implicit in all the above that sinχm �= 0 for any m. If sinχm = 0 then we have the
situation where one of the scattered plane waves propagates along the array. We will
not consider this resonant case here but refer to Thompson & Linton (2006) where
this special case is investigated in detail. From (6.4) the amplitudes of the scattered
waves for each scattering angle ±χm are given in terms of the coefficients A0µ by

A±
m =

πi

kR

1

sinχm

∞∑
µ=−∞

A0µ e±iµχm. (6.5)

Note that the primary reflection and transmission coefficients are given by A−
0 and

1 + A+
0 , respectively.

6.2. Semi-infinite array

For a semi-infinite array, our derivation relies heavily on that of Linton & Martin
(2004). Their setting is simpler, however. In particular, it does not support Rayleigh–
Bloch waves.

Making use of (6.3), the total field is

φ = φIn +

∞∑
m=0

fm(z)

∞∑
j=0

∞∑
µ=−∞

(
PjAmµ + Qj Amµ + Zj

mµ

)
Kν(kmrj )e

iµθj

∼ φIn +
1

2
f0(z)

∞∑
j=0

∞∑
µ=−∞

(
PjA0µ + Qj Amµ + Z

j

0µ

)

×
∫ ∞

−∞

e−kγ (t)|y|

γ (t)
eik(x−jR)t eiµ sgn(y) arccos t dt

as kr → ∞, away from the array axis y = 0.
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We begin with the asymptotics of the term

∞∑
j=0

Pj

∫ ∞

−∞

e−kγ (t)|y|

γ (t)
eik(x−jR)t eiµ sgn(y) arccos t dt.

Making use of the half-range summation formula (Linton & Martin 2004, equa-
tion (B.2))

∞∑
m=0

∫ ∞

−∞
f (u) e−imu du =

∫ ∞

−∞
− f (u)

1 − e−iu
du + π

∞∑
m=−∞

f (2mπ) =

∫ ∞

−∞
�

f (u)

1 − e−iu
du

to express the sum as a contour integral (the notation
∫
� means that the contour

passes below the poles of the integrands) and writing

f̃ µ(t) = eiµ sgn(y) arccos t

for ease of notation, we obtain

∞∑
j=0

Pj

∫ ∞

−∞

e−kγ (t)|y|

γ (t)
eik(x−jR)t f̃ µ(t) dt =

∫ ∞

−∞
�

e−kγ (t)|y| eikxt f̃ µ(t)

γ (t)
(
1 − eiR(ψ−kt)

) dt

∼ if̃ µ(cos θ) ei(kr−π/4)

1 − eikR(cosχ−cos θ)

√
2π

kr

+ 2πi
∑
m∈M
χm>θ

f̃ µ(ψm/k) eikr cos(|θ |−χm)

kR sinχm

(6.6)

as kr → ∞, where we have made use of the asymptotics of the contour integral given
by Linton & Martin (2004, equation (F1)).

Similarly, for the term involving the coefficient of the Rayleigh–Bloch wave, we
obtain

∞∑
j=0

Qj

∫ ∞

−∞

e−kγ (t)|y|

γ (t)
eik(x−jR)t f̃ µ(t) dt ∼ if̃ µ(cos θ) ei(kr−π/4)

1 − eiR(β−k cos θ)

√
2π

kr
(6.7)

as kr → ∞, where the sum over the scattering angles vanishes in the derivation since
β >k.

For the sum over j involving Z
j

0µ,

∞∑
j=0

Z
j

0µ

∫ ∞

−∞

e−kγ (t)|y|

γ (t)
eik(x−jR)t f̃ µ(t) dt, (6.8)

we take the sum inside the integral (the assumption Z
j

0µ → 0 as j → ∞ ensures that

|Zj

0µe−ijkRt | becomes small enough for large j ) and use stationary phase (in exactly
the same way as for (6.6), except that there are now no poles to worry about). In
summary, we find that

φ ∼ φIn + f0(z)H̃ (kr)g(θ) +
πif0(z)

kR

∑
m∈M

χm>|θ |

eikr cos(|θ |−χm)

sin χm

∞∑
µ=−∞

A0µeiµ sgn(θ)χm, (6.9)
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where H̃ (kr) =
√

π/2kr exp(i(kr − π/4)) and

g(θ) = i

∞∑
µ=−∞

eiµθ

(
A0µ

1 − eikR(cosχ−cos θ)
+

A0µ

1 − eiR(β−k cos θ)
+

∞∑
j=0

Z
j

0µ e−ijkR cos θ

)
. (6.10)

The diffracted field takes the form of a circular wave of amplitude g(θ) plus a
sum of plane waves which propagate in the same directions as for the infinite-grating
case. However, unlike in the infinite-array problem, the plane waves do not exist
everywhere and the wave making an angle χm (resp. −χm) with the x-axis is only
found in the sector 0 < θ < χm (resp. 0 > θ > −χm).

The coefficients Z
j

0µ and the Rayleigh–Bloch coefficient A0µ affect only the circular
wave. The plane-wave field is determined entirely from the solution of the infinite-
grating problem; in fact, where the plane waves exist, their amplitude is precisely as
in the infinite-grating problem.

The amplitude g(θ) of the circular wave becomes infinite as θ approaches one
of the so-called shadow boundaries |θ | = χp . This is so because, in performing the
steepest-descent analysis, it was explicitly assumed that |θ | �=χp . Uniform asymptotics
valid as θ → χp can be derived. It turns out (cf. Linton & Martin 2004, equation (F.2))
that the term

√
πei(kr−π/4)

√
2krkR sin((|θ | − χp)/2) sin χp

f̃ µ(ψp/k)
(
1 + 2iζpe−iζ 2

p F (ζp)
)

(6.11)

must be added to the right-hand side of (6.6), where ζp =
√

2kr sin(| |θ | − χp|/2) and

F (v) =

∫ ∞

v

eiu2

du (0 < arg u < π/2 as u → ∞) (6.12)

is a Fresnel integral. Therefore, near the shadow boundaries, the term

g̃(r, θ) =
1 + 2iζpe−iζ 2

p F (ζp)

2kR sin((|θ | − χp)/2) sin χp

∞∑
µ=−∞

A0µeiµ sgn(θ)χp (6.13)

must be added to (6.10) so that the amplitude of the circular wave is given by
g(θ) + g̃(r, θ). The combination g + g̃ is bounded as θ → χp for any r , but the limit
is different from each side. However, since F (0) = 1

2

√
π exp(iπ/4), the discontinuity in

g + g̃ as θ passes through χp exactly cancels the extra plane-wave contribution that
appears in (6.6) as the shadow boundary is crossed, thus ensuring that the far field is
continuous.

7. Efficient computation of the Schlömilch series
The values of the Schlömilch series σn

ν (see (3.2)), ς̃ nl
ν , ς̂ nl

ν (see (5.2)) and ςnl
ν

(see (5.9)), appearing in the systems of equations for the coefficients of the scattered
wave field of the bodies, cannot be computed straightforwardly for n= 0. The reason
is that the sums are not absolutely convergent, owing to the slow decay of the modified
Bessel function of the second kind for large imaginary arguments (the terms in the
sum decay as j−1/2eijθ for some θ). The calculation of the constants for n �= 0 is easy,
however, since the modified Bessel function of the second kind decays exponentially
for large real arguments.

The efficient computation of the slowly convergent series appearing in the infinite-
array calculation, σ 0

ν , which are often referred to as lattice sums, is discussed in detail
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in Peter et al. (2006) using the same notation as is used here. It is based on the results
of Linton (1998).

Therefore, we focus on the efficient computation of ς̃ 0l
ν , ς̂ 0l

ν and ς0l
ν . First, note that

ς̃ nl
ν =

∞∑
j=1

Kν(knjR)e−ijRk cos χ −
l∑

j=1

Kν(knjR)e−ijRk cos χ , (7.1)

ς̂ nl
ν =

∞∑
j=1

Kν(knjR)e−ijRβ −
l∑

j=1

Kν(knjR)e−ijRβ, (7.2)

ςnl
ν = (−1)ν

∞∑
j=1

Kν(knjR)eijRβ − (−1)ν
N−l∑
j=1

Kν(knjR)eijRβ. (7.3)

It therefore suffices to discuss the efficient computation of the series

ς±
ν (u) =

∞∑
j=1

Kν(−ikjR)e±ijRu =
πiν+1

2

∞∑
j=1

H (1)
ν (kjR)e±ijRu, (7.4)

where we have used (2.8). An efficient way of calculating these series has only been
found recently (Linton 2006). Since it is rather involved we refer the reader to Linton
(2006) for details.

8. Numerical simulations
We now present numerical calculations for rigid bottom-mounted circular cylinders,

fixed docks and ice floes. The ice floes are taken as floating flexible plates of shallow
draft, as modelled by Meylan (2002).

The diffraction transfer matrices of rigid bottom-mounted circular cylinders are
particularly simple owing to the axisymmetry. In fact they are diagonal, with diagonal
elements

(B)pp =
−I ′

p(k0a)

K ′
p(k0a)

. (8.1)

There are no decaying modes if the ambient incident wave does not contain decaying
modes (which is the case in our considerations). Details of the calculation of the
diffraction transfer matrices for floating plates can be found in Peter et al. (2006).

The remainder of this section consists of three parts. We begin by investigating the
convergence of the method for the case when a Rayleigh–Bloch wave is present. For
this purpose, we consider scattering by semi-infinite arrays of cylinders. In the second
part, we investigate the existence of Rayleigh–Bloch waves for a more complicated
structure than a cylinder, namely circular floating stiff plates, for two parameter sets.
It turns out that, in the cases considered, Rayleigh–Bloch waves do not exist. In the
third part of this section, scattering by semi-infinite arrays of floating flexible plates
is investigated and compared with that of an analogous array of docks as well as the
corresponding infinite array.

In all the calculations presented, the water depth is d = 1/2 and the ambient incident
wave field is of unit amplitude (in displacement) and travels in a direction making an
angle χ = π/5 with the x-axis.

8.1. Cylinders

We investigated the convergence of both the subtraction method and the projection
method for a semi-infinite array of bottom-mounted circular cylinders. We chose the
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Figure 2. Real part (solid line) and imaginary part (dashed line) of the potential of the
Rayleigh–Bloch wave associated with the zeroth cylinder at the cylinder boundary, φRB

0 (ak, θ )
for a1 = 1/2 (a) and a2 = 3/4 (b), also see (8.2).

wavenumber k = 1 and body spacing R = 2 and we considered cylinders with two
different radii, a1 = 1/2 and a2 = 3/4. Note that there is only one scattering angle in
this case, namely the angle of the ambient incident wave, χ = π/5. For both cases, it
is sufficient to use 11 modes in the calculations.

For the cylinders of radius a1 = 1/2, the Rayleigh–Bloch wavenumber can be
calculated as β1 = 1.013 398 and we have A−

0 = 0.060 267 − 0.175 943 i and A+
0 =

−0.070 466 + 0.318 400 i. For a2 = 3/4, we have β2 = 1.025 629 and A−
0 = 0.327 177 −

0.467 147 i and A+
0 = −0.327 185 + 0.471 221 i. In figure 2, the potential at the cylinder

boundary of the Rayleigh–Bloch wave associated with the zeroth cylinder is plotted
for both radii, i.e. we plot φRB

0 (ak, θ), k = 1, 2, where

φRB
0 (r, θ) =

∞∑
µ=−∞

v0µKµ(k0r)e
iµθ . (8.2)

This visualizes the numerical results obtained for v.
Using this data, the complex constant c (see § 5.2) was determined using the least-

squares fit (that is, finding the complex c such that ZN is as small as possible) as well
as the projection method (where it was calculated a posteriori as c = Q−N (zN | v)). The
real and imaginary parts of c obtained using N cylinders in the calculation are plotted
in figure 3 for increasing N . Some numerical values are given in table 1. It can be seen
that the method is only slowly convergent; however, reasonable accuracy, which will
be sufficient for most applications, is already obtained for a small number of bodies.
Also, the two methods give virtually identical accuracy (it should be noted that the
subtraction method is less numerically efficient because the least-squares approach
can require considerable computation time).

In figure 4, the total wave field and the scattered wave field only are plotted. The
circular wave radiating from the edge and the plane waves (note that there are only
two in each setting, propagating in the directions ±χ) can be clearly seen. Note also
that the reflected wave is of much greater amplitude for the cylinders with greater
radius. Figure 5 shows the Rayleigh–Bloch wave as it travels down the corresponding
infinite array, i.e. we have plotted the surface displacement corresponding to cφRB .
The wavenumber of this wave is larger than the ambient wave, and away from the
array the wave decays quickly.
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Figure 3. Real (�) and imaginary (�) parts of c for an increasing number of cylinders,
calculated using the projection method, for a1 = 1/2 (a) and a2 = 3/4 (b).

N c (projection method) c (subtraction method)

50 −0.024 565 − 0.006 299 i −0.024 560 − 0.006 261 i
100 −0.026 018 − 0.007 509 i −0.026 001 − 0.007 507 i
150 −0.026 659 − 0.006 938 i −0.026 656 − 0.006 949 i
200 −0.026 386 − 0.006 464 i −0.026 395 − 0.006 467 i

N c (projection method) c (subtraction method)

50 +0.027 302 − 0.042 334 i +0.027 247 − 0.042 274 i
100 +0.025 438 − 0.043 948i +0.025 495 − 0.043 966 i
150 +0.025 712 − 0.042 708 i +0.025 668 − 0.042 711 i
200 +0.025 468 − 0.043 419 i +0.025 514 − 0.043 400 i

Table 1. The constant c calculated with the projection method and the subtraction method
using N cylinders in the calculation, for a1 = 1/2 (above) or a2 = 3/4 (below).

In figure 6, the absolute value of the amplitude of the circular wave, |g(θ) + g̃(r, θ)|
is plotted for r = 2π (i.e. r is one wavelength of the ambient wave). The discontinuities
in the amplitude at the shadow boundaries, θ = ±χ , and at the array axis, θ = 0, can
be clearly seen.

8.2. Rayleigh–Bloch waves for arrays of circular stiff plates

We briefly present some results concerning the existence of Rayleigh–Bloch waves
for arrays of circular stiff plates, where the plates are modelled as floating stiff plates
of shallow draft as in Peter et al. (2006). The circular stiff plate is one of the most
straightforward generalizations of a circular cylinder and it is therefore an obvious
starting point to look for Rayleigh–Bloch waves in the general three-dimensional case.
Instead of using the solution method described in Peter et al. (2006) (which is based
on the finite-element method), we used the matched-asymptotic-expansion method of
Peter, Meylan & Chung (2004) to calculate the diffraction transfer matrix for a single
circular stiff plate. This method is much more accurate but it is limited to circular
plates. We took the same parameters as in the previous subsection, i.e. wavenumber
k = 1, body spacing R =2 and radius a = 3/4, and considered the two special cases
where the plates have (non-dimensional) mass γ̃ = 0 and γ̃ → ∞ (the latter of which
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Figure 4. Total wave field (a) and scattered wave field only (b) from the solution for the
semi-infinite array of cylinders with radius a1 = 1/2 (left) or a2 = 3/4 (right).
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Figure 5. Rayleigh–Bloch wave excited in a semi-infinite array of cylinders with radius
a1 = 1/2 (left) and a2 = 3/4 (right): (a) real part; (b) imaginary part.

corresponds to a fixed dock and allows further simplification), respectively. For these
calculations, we again used 11 propagating modes but also 11 evanescent modes and
one root of the dispersion relation (2.4).
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Figure 7. Real part (solid line) and imaginary part (dashed line) of the determinant of
(I − B tSinf(β)) plotted against β for a circular stiff plate with non-dimensional mass γ̃ = 0 (a)
and γ̃ → ∞ (b).

In figure 7, the determinants of the matrices (I − B tSinf(β)) (cf. (4.3)) corresponding
to these two cases are plotted over β ∈ (k, π/R]. Recall that these determinants have
to have a zero if there exists a Rayleigh–Bloch wave. As can be seen, the determinants
do not have a zero in the critical interval, which implies that no Rayleigh–Bloch wave
is supported. It may also be observed that the imaginary part of the determinant is
almost zero if γ̃ =0 (figure 7a) and that the ratio of the real part and the imaginary
part is a constant for the case of a dock (figure 7b). Similar curves are obtained for
radius a = 1/2.

Unlike in the two-dimensional case (corresponding to Helmholtz scattering), where
Rayleigh–Bloch waves have been proved to exist in a large number of situations, it
appears that this is not the case for the general three-dimensional problem. However,
it needs to be noted that the above results do not allow any general conclusions and
it seems likely that Rayleigh–Bloch waves do exist for some special structures even
in the general case.

8.3. Docks and floating elastic plates

We present results for fixed docks and floating elastic plates. For comparability, we
used the same parameter set as that used by Peter et al. (2006) for the infinite-array
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Figure 8. Solution to the scattering problem for an array of floating elastic plates with
non-dimensional stiffness and mass β̃ = γ̃ = 0.02 (a) and a similar array of fixed docks (b). Top,
total wave field; middle, scattered wave field; bottom, scattered wave field of the corresponding
infinite array.

problem, that is, ambient wavelength λ= 1.5 and spacing R = 4. The bodies are square
with side-length 2. The elastic plates were chosen to have non-dimensional stiffness
and mass β̃ = γ̃ = 0.02 (the tildes have been introduced in order to avoid confusion
with the Rayleigh–Bloch wavenumber).

In figure 8, it can be clearly seen that the docks scatter the waves much more strongly
than the elastic plates. Moreover, the circular waves and the shadow boundaries are
clearly apparent in the plots of the scattered wavefields. Further down the semi-infinite
array, it can be seen that the scattered wave field becomes more and more similar to
that of the corresponding infinite array.

9. Summary
We have presented a solution to the scattering of water waves from a semi-infinite

array of identical bodies of arbitrary geometry and scattering properties. Under certain
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simplifying assumptions our solution reduces to the problem of solving the two-
dimensional Helmholtz equation. This solution has a range of applications outside
water waves, for example in acoustic or electromagnetic scattering. The solution
method generalizes the results of Linton & Martin (2004), who solved the two-
dimensional Helmholtz equation for point scatterers. As well as extending the formula-
tion to general bodies and water-wave scattering we have also shown how to include
the effect of Rayleigh–Bloch waves in the formulation. These are bound waves, which
exist for many geometries in the two-dimensional Helmholtz-equation problem, and
they are excited in the semi-infinite problem. We have presented a range of solutions
for various geometries, focusing on scattering by cylinders in the simplest Helmholtz-
equation case (where there are Rayleigh–Bloch waves) and on the highly non-trivial
scattering by arrays of floating plates.
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